
TEROS 54 INTEGRATOR GUIDE

18512-00
3.2023

DESCRIPTION
The TEROS 54 probe is an accurate tool for monitoring volumetric water content (VWC) and temperature in
soil and soilless substrates. The TEROS 54 sensors determine VWC using capacitance/frequency-domain
technology. The sensor uses a 70 MHz frequency that minimizes textural and salinity effects, making the
TEROS 54 probe accurate in most mineral soils. The TEROS 54 uses four precession-integrated temperature
sensors to measure temperature in soil and soilless substrates.

For a more detailed description of how this sensor makes measurements, refer to the TEROS 54 User Manual.

APPLICATIONS
• Volumetric water content (VWC) measurement

• Soil/substrate water balance

• Irrigation management

• Soil/substrate temperature measurement

• Solute/fertilizer movement

ADVANTAGES
• Digital sensor communicates multiple measurements over a

serial interface

• Low-input voltage requirements

• Low-power design supports battery-operated data loggers

• Supports SDI-12 or DDI Serial communications protocols

• Modbus RTU or tensioLINK serial communications protocol
supported

PURPOSE OF THIS GUIDE
METER provides the information in this integrator guide to
help TEROS 54 customers establish communication
between these probes and their data acquisition equipment
or field data loggers. Customers using data loggers that support
SDI-12 sensor communications should consult the data logger
user manual. METER probes/sensors are fully integrated
into the METER plug-and-play system, cellular-enabled data
loggers, and data analysis software.

COMPATIBLE FIRMWARE VERSIONS
This guide is compatible with firmware versions 1.2 or newer.

Figure 1 TEROS 54 probe

METER Group, Inc.
2365 NE Hopkins Court, Pullman, WA 99163
T +1.509.332.2756 F +1.509.332.5158
E info@metergroup.com W metergroup.com

2

SPECIFICATIONS
MEASUREMENT SPECIFICATIONS

Volumetric Water Content (VWC)

Range

Mineral soil
calibration:

0.00–0.70 m3/m3

Soilless media
calibration:

0.00–1.00 m3/m3

NOTE: The VWC range is dependent on the media the sensor
is calibrated to. A custom calibration will accommondate the
necessary ranges for most substrates.

Resolution 0.001 m3/m3

Accuracy

Generic
callibrartion:

±0.05 m3/m3 typical in
mineral soils that have
solution EC < 8000 mS/cm

Medium
specific
calibration:

±0.02–0.03 m3/m3 in any porous
medium

Apparent
dielectric
permittivity:

1–40 (soil range),
±1 ea(unitless)
40–80, 15% of measurement

Dielectric Measurement Frequency

70 MHz

Temperature

Range –20 to +60 °C

Resolution ±0.03 °C

Accuracy ±0.5 °C between –20 and +0 °C

±0.25 °C between 0 and +60 °C

COMMUNICATION SPECIFICATIONS

Output

DDI Serial and SDI-12 communications protocol

3- wire cable version (Figure 4)
4-wire cable version (Figure 7)

RS-485 Modbus RTU and tensioLINK serial
communications protocol

4-wire cable version (Figure 6)

Data Logger Compatibility

METER ZL6 and EM60 data loggers or any data
acquisition system capable of 4.0- to 24.0-VDC
power and serial interface with SDI-12 and/or
RS-485 interface, Modbus RTU, or tensioLINK.

PHYSICAL SPECIFICATIONS
Dimensions

Length 75.0 cm (29.53 in)

Diameter (shaft) 6.0 cm (2.36 in)

Width (head) 11.0 cm (4.33 in)

Operating Temperature

Minimum –20 °C

Maximum +60 °C

Cable Length

5.0 m (stereo plug and stripped and tinned wires)
75.0 m (maximum custom cable length)

1.5 m (M12 connector)

NOTE: Contact Customer Support if a nonstandard cable length
is needed.

Cable Diameter

Stereo Plug 4.2 ±0.2 mm (0.16 ±0.01 in)
with minimum jacket of 0.8 mm
(0.031 in)

M12 Plug 5.5 ±0.2 mm (0.22 ±0.01 in)
with minimum jacket of 1.0 mm
(0.039 in)

Connector Size

3.50 mm (diameter)

14.4 mm (diameter M12)

Connector Types

Stereo plug connector or stripped and tinned wires

4-pin M12 connector or stripped and tinned wires

Conductor Gauge

Stereo Plug 22-AWG / 24-AWG drain wire

M12 Plug 22-AWG

ELECTRICAL AND TIMING CHARACTERISTICS

Supply Voltage (power to ground)

Minimum 4.0 VDC

Typical NA

Maximum 24.0 VDC

Digital Input Voltage (logic high)

Minimum 2.8 V

Typical 3.6 V

Maximum 5.0 V

3

Digital Input Voltage (logic low)

Minimum –0.3 V

Typical 0.0 V

Maximum 0.8 V

Digital Output Voltage (logic high)

Minimum NA

Typical 3.6 V

Maximum NA

Power Line Slew Rate

Minimum 1.0 V/ms

Typical NA

Maximum NA

Current Drain (during 500-ms measurement)

Minimum 3 mA

Typical 35 mA

Maximum 50 mA

Current Drain (while asleep)

Minimum 0.03 mA

Typical 0.1 mA

Maximum NA

Power Up Time (DDI Serial)

Minimum 500 ms

Typical NA

Maximum 800 ms

Power Up Time (SDI-12)

Minimum NA

Typical 1,000 ms

Maximum NA

Power Up Time (SDI-12, DDI Serial disabled)

Minimum 500 ms

Typical 600 ms

Maximum 800 ms

Measurement Duration (4 depths)

Minimum 500 ms

Typical NAs

Maximum 800 ms

COMPLIANCE

EM ISO/IEC 17050:2010 (CE Mark)

EQUIVALENT CIRCUIT AND CONNECTION TYPES
The following sections explains the TEROS 54 connection types available.

THREE-WIRE SDI-12 ONLY VERSION
Refer to Figure 2, Figure 3, and Figure 4 to connect the TEROS 54 to a data logger. Figure 2 provides a
low-impedance variant of the recommended SDI-12 specification.

G
N
D

D
AT
A

GND

510

R1

R
2

10
0
K

C
1

22
0
P
F

L1

10UH

Figure 2 Equivalent circuit diagram

4

To probe

3.5-mm stereo connector Pigtail adapter Stripped and tinned wire

Ground

Digital communication (orange)

Power (brown)

Ground (bare)

Digital communication (orange)

Power (brown)

Figure 3 Three-wire stereo connector and pigtail adapter

Excitation Digital in
SDI-12

3-wire
SDI-12

Data Logger

Ground

Digital
communication

(orange)
Ground

(bare)
Power
(brown)

Figure 4 Three-wire SDI-12 pigtail wiring diagram

FOUR-WIRE VERSION
TEROS 54 sensors can also be ordered with a 4-pin M12 connector and optional pigtail adapter.

Connect the TEROS 54 wires to the data logger as listed below and illustrated in Figure 5, Figure 6,
and Figure 7.

• Supply wire (brown) connected to the excitation.

• Digital out wire (white) connected to digital input (SDI-12 or RS-485 A).

• Digital out wire negative (black) connected to digital input (RS-485 B).

• Ground wire (blue) connected to ground.

• Optionally, the screen wire (bare) can be connected to ground for shielding when using long cables.

PIN 4 RS-485-B (black)
Shield
(black)

PIN 3 Ground (blue)
PIN 2 RS-485-A/SDI-12 (white)
PIN 1 Power + (brown)

34
1 2

Male plug on
sensor cable

From
probe or

sensor

Figure 5 Four-wire M12 connector and pigtail adapter for use with screw terminal

Figure 6

Excitation Digital in
RS-485-A (+)

4-wire M12
RS-485

Data Logger

Ground

Digital
communication

(white)
Ground

(blue)
Power
(brown)

Digital in
RS-485-B (–)

Digital
communication

(black)

Four-wire M12 connector RS-485 wiring diagram

5

Excitation Digital in
SDI-12

4-wire M12
SDI-12

Data Logger

Ground

Digital
communication

(white)
Ground

(blue, black)
Power
(brown)

Figure 7 Four-wire M12 connector SDI-12 wiring diagram

PRECAUTIONS
METER sensors are built to the highest standards, but misuse, improper protection, or improper installation may damage the sensor
and possibly void the warranty. Before integrating sensors into a sensor network, follow the recommended installation instructions and
implement safeguards to protect the sensor from damaging interference.

SURGE CONDITIONS
Sensors have built-in circuitry that protects them against common surge conditions. Installations in
lightning-prone areas, however, require special precautions, especially when sensors are connected to a
well-grounded third-party logger.

Read the application note Lightning surge and grounding practices on the METER website for more information.

POWER AND GROUNDING
METER SDI-12 sensors can be power-cycled and read on the desired measurement interval or powered
continuously and commands sent when a measurement is desired.

Ensure there is sufficient power to simultaneously support the maximum sensor current drain for all the
sensors on the bus. The sensor protection circuitry may be insufficient if the data logger is improperly
powered or grounded. Refer to the data logger installation instructions. Improper grounding may affect the
sensor output as well as sensor performance.

Read the application note Lightning surge and grounding practices on the METER website for more information.

CABLES
Improperly protected cables can lead to severed cables or disconnected sensors. Cabling issues can be
caused by many factors, including rodent damage, driving over sensor cables, tripping over the cable, not
leaving enough cable slack during installation, or poor sensor wiring connections. To relieve strain on the
connections and prevent loose cabling from being inadvertently snagged, gather and secure the cable
traveling between the TEROS 54 and the data acquisition device to the mounting mast in one or more places.
Install cables in conduit or plastic cladding when near the ground to avoid rodent damage. Tie excess cable to
the data logger mast to ensure cable weight does not cause the sensor to unplug.

SENSOR COMMUNICATIONS
METER digital sensors feature a serial interface with shared receive and transmit signals for communicating
sensor measurements on the data wire (Figure 3). The sensor supports two different protocols: SDI-12 and
DDI Serial. Each protocol has implementation advantages and challenges. Please contact Customer Support if
the protocol choice for the desired application is not obvious.

SDI-12 INTRODUCTION
SDI-12 is a standards-based protocol for interfacing sensors to data loggers and data acquisition equipment.
Multiple sensors with unique addresses can share a common 3-wire bus (power, ground, and data). Two-way
communication between the sensor and logger is possible by sharing the data line for transmit and receive
as defined by the standard. Sensor measurements are triggered by protocol command. The SDI-12 protocol
requires a unique alphanumeric sensor address for each sensor on the bus so that a data logger can send
commands to and receive readings from specific sensors.

Download the SDI-12 Specification v1.3 to learn more about the SDI-12 protocol.

http://library.metergroup.com/Sales%20and%20Support/METER%20Environment/Website%20Articles/Lightning-surge-grounding-practices.pdf
http://library.metergroup.com/Sales%20and%20Support/METER%20Environment/Website%20Articles/Lightning-surge-grounding-practices.pdf
https://sdi-12.org/archives_folder/SDI-12_version1_3%20January%2028%2C%202016.pdf

6

DDI SERIAL INTRODUCTION
The DDI Serial protocol is the method used by the METER data loggers for collecting data from the sensor. This
protocol uses the single data line configured to transmit data from the sensor to the receiver only (simplex).
Typically, the receive side is a microprocessor Universal Asynchronous Receiver/Transmitter (UART) or a
general-purpose Input/Output (I/O) pin using a bitbang method to receive data. Sensor measurements are
triggered by applying power to the sensor.

RS-485 INTRODUCTION (4-WIRE VERSION ONLY)
RS-485 is a robust physical bus connection to connect multiple devices to one bus. It is capable of using
very long cable distances under harsh environments. TEROS 54 uses a 2-wire, half-duplex implementation of
RS-485. Two wires are used for supply and two wires for the differential serial interface. One of the serial wires
is also overlayed with the SDI-12 data wire. The sensor recognizes a command depending on the protocol
that is used to issue a command. Instead of SDI-12, RS-485 uses two dedicated wires for the data signal. This
allows the use of longer cables and is more insensitive to interference from outside sources, since the signal
is related to the different wires, and supply currents do not influence the data signal. See Wikipedia for more
details on RS-485.

TENSIOLINK RS-485 INTRODUCTION (4-WIRE VERSION ONLY)
tensioLINK is a fast, reliable, proprietary serial communications protocol that communicates over the
RS-485 interface. This protocol is used to read out data and configure features of the device. METER provides
a tensioLINK PC USB converter and software to communicate directly with the sensor, read out data, and
update the firmware. Please contact Customer Support for more information about tensioLINK.

MODBUS RTU RS-485 INTRODUCTION (4-WIRE VERSION ONLY)
Modbus RTU is a common serial communications protocol used by Programmable Logic Controllers
(PLCs) or data loggers to communicate with all kinds of digital devices. The communication works over the
physical RS-485 connection. The combination of RS-485 for the physical connection and Modbus as serial
communications protocol allows fast and reliable data transfer for a high number of sensors connected to one
serial bus wire. Use the following links for more Modbus information: Wikipedia and modbus.org.

INTERFACING THE SENSOR TO A COMPUTER
The serial signals and protocols supported by the sensor require some type of interface hardware to be
compatible with the serial port found on most computers (or USB-to-serial adapters). METER recommends
using the tensioLINK USB converter (M12 only). There are several SDI-12 interface adapters available in the
marketplace; however, METER has not tested any of these interfaces and cannot make a recommendation
as to which adapters work with METER sensors. METER data loggers and handheld devices can operate as a
computer-to-sensor interface for making on-demand sensor measurements. For more information, please
contact Customer Support.

METER SDI-12 IMPLEMENTATION
METER sensors use a low-impedance variant of the SDI-12 standard sensor circuit (Figure 2). During the
power-up time, sensors output a sensor reading formatted as a DDI Serial message and should not be
communicated with until the power-up time has passed. After the power-up time, the sensors are compatible
with all commands listed in the SDI-12 Specification v1.3 except for the continuous measurement commands
(aR0 through aRC9 and aRC0 through aRC9). See page 9 for M R, and C command implementations. The
aR3 and aR4 commands used by METER systems use a space delimiter instead of the SDI-12 Specification
v1.3 standard's required sign delimiter.

Out of the factory, all METER sensors start with SDI-12 address 0 and print out the DDI Serial startup string
during the power-up time. This can be interpreted by non-METER SDI-12 sensors as a pseudo-break condition
followed by a random series of bits.

The TEROS 54 will omit the DDI Serial startup string when the SDI-12 address is nonzero or if
<suppressionState> is set to 1. Changing the address to a nonzero address is recommended for this reason.

https://en.wikipedia.org/wiki/RS-485
https://en.wikipedia.org/wiki/Modbus
https://modbus.org/docs/Modbus_over_serial_line_V1_02.pdf
https://sdi-12.org/archives_folder/SDI-12_version1_3%20January%2028%2C%202016.pdf
https://sdi-12.org/archives_folder/SDI-12_version1_3%20January%2028%2C%202016.pdf
https://sdi-12.org/archives_folder/SDI-12_version1_3%20January%2028%2C%202016.pdf

7

SENSOR BUS CONSIDERATIONS
SDI-12 sensor buses require regular checking, sensor upkeep, and sensor troubleshooting. If one sensor
goes down, that may take down the whole bus even if the remaining sensors are functioning normally. METER
SDI-12 sensors can be power-cycled and read on the desired measurement interval or powered continuously
and commands sent when a measurement is desired. Many factors influence the effectiveness of the bus
configuration. Visit metergroup.com for articles and virtual seminars containing more information.

SENSOR ERROR CODE
The TEROS 54 has one error code: -9999. This error code is output in place of the measured value if the sensor
detects that the measurement function has been compromised and the subsequent measurement values
have no meaning.

SDI-12 CONFIGURATION
Table 1 lists the SDI-12 communications configuration.

Table 1 SDI-12 communications characters

Baud Rate (bps) 1,200

Start Bits 1

Data Bits 7 (LSB first)

Parity Bits 1 (even)

Stop Bits 1

Logic Inverted (active low)

SDI-12 TIMING
All SDI-12 commands and responses must adhere to the format in Figure 8 on the data line. Both the
command and response are preceded by an address and terminated by a carriage return and line feed
combination (<CR><LF>) and follow the timing shown in Figure 9.

START STOPD0 D1 D2 D3 D4 D5 D6 EP

Figure 8 Example SDI-12 transmission of the character 1 (0x31)

Break
(at least 12 ms)

Marking
(at least 8.33 ms)

Marking
(at least 8.33 ms)

Command Response

SENSORDATA LOGGER

Maximum timeSensor must respond
within 15 ms

Figure 9 Example data logger and sensor communication

COMMON SDI-12 COMMANDS
This section includes tables of common SDI-12 commands that are often used in an SDI-12 system and the
corresponding responses from METER sensors.

http://www.metergroup.com

8

IDENTIFICATION COMMAND (aI!)
The Identification command can be used to obtain a variety of detailed information about the connected
sensor. An example of the command and response is shown in Example 1, where the command is in bold and
the response follows the command.

Example 1 1I!113METER ␣ ␣ ␣TER54␣120631800001

Parameter

Fixed
Character

Length Description

 1I! 3
Data logger command.
Request to the sensor for information from sensor address 1 .

 1 1
Sensor address.
Prepended on all responses, this indicates which sensor on the bus is returning
the following information.

 13 2 Indicates that the target sensor supports SDI-12 Specification v1.3.

 METER ␣ ␣ ␣ 8
Vendor identification string.
(METER and three spaces ␣ ␣ ␣ for all METER sensors)

 TER12␣ 6
Sensor model string.
This string is specific to the sensor type.
For the TEROS 54, the string is TER54␣ .

 120 3
Sensor version.
This number divided by 120 is the METER sensor version
(e.g., 100 is version 1.20).

 631800001
≤13,

variable
Sensor serial number.
This is a variable length field. It may be omitted for older sensors.

CHANGE ADDRESS COMMAND (aAB!)
The Change Address command is used to change the sensor address to a new address. All other commands
support the wildcard character as the target sensor address except for this command. All METER sensors
have a default address of 0 (zero) out of the factory. Supported addresses are alphanumeric (i.e., a – z , A – Z ,
and 0 – 9). An example output from a METER sensor is shown in Example 2, where the command is in bold and
the response follows the command.

Example 2 1A0!0

Parameter

Fixed
Character

Length Description

 1A0! 4
Data logger command.
Request to the sensor to change its address from 1 to a new address of 0 .

 0 1
New sensor address.
For all subsequent commands, this new address will be used by the target sensor.

ADDRESS QUERY COMMAND (?!)
While disconnected from a bus, the Address Query command can be used to determine which sensors are
currently being communicated with. Sending this command over a bus will cause a bus contention where all
the sensors will respond simultaneously and corrupt the data line. This command is helpful when trying to
isolate a failed sensor. Example 3 shows an example of the command and response, where the command is in
bold and the response follows the command. The question mark (?) is a wildcard character that can be used in
place of the address with any command except the Change Address command.

http://www.sdi-12.org/archives/SDI-12_version1_3%20January%2028,%202016.pdf

9

Example 3 ?!0

Parameter

Fixed
Character

Length Description

 ?! 2
Data logger command.
Request for a response from any sensor listening on the data line.

 0 1
Sensor address.
Returns the sensor address to the currently connected sensor.

COMMAND IMPLEMENTATION
The following tables list the relevant Measurement (M), Continuous (R), and Concurrent (C) commands and
subsequent Data (D) commands, when necessary.

NOTE: SDI-12 commands MC, CC, and RC that request the sensor response include cyclic redundancy check characters may also be used.

MEASUREMENT COMMANDS IMPLEMENTATION
Measurement (M) commands are sent to a single sensor on the SDI-12 bus and require that subsequent Data
(D) commands are sent to that sensor to retrieve the sensor output data before initiating communication with
another sensor on the bus.

Please refer to Table 2 and for an explanation of the command sequence and to Table 12 for an explanation of
response parameters.

Table 2 aM! command sequence

Command Response

This command reports average, accumulated, or maximum values.

 aM! atttn

 aD0!
 a+<VWC_RAW_D1>±<temp_D1>+<VWC_RAW_D2>±<temp_D2>+<VWC_RAW_D3>±<temp_D3>+<VWC_RAW_
D4>±<temp_D4>

 aD1! a+<VWC_D1>±<temp_D1>+<VWC_D2>±<temp_D2>+<VWC_D3>±<temp_D3>+<VWC_D4>±<temp_D4>

NOTE: The measurement and corresponding data commands are intended to be used back to back. After a measurement command is
processed by the sensor, a service request a <CR><LF> is sent from the sensor signaling the measurement is ready. Either wait until 5 s
have passed or wait until the service request is received before sending the data commands. See the SDI-12 Specifications v1.3 document
for more information.

CONCURRENT MEASUREMENT COMMANDS IMPLEMENTATION
Concurrent Measurement (C) commands are typically used with sensors connected to a bus. C commands
for this sensor deviate from the standard C command implementation. First, send the C command, wait
the specified amount of time detailed in the C command response, and then use D commands to read its
response prior to communicating with another sensor.

Please refer to Table 3 for an explanation of the command sequence and to Table 12 for an explanation of
response parameters.

Table 3 aC! measurement command sequence

Command Response

This command reports instantaneous values.

aC! atttnn

aD0!
a+<VWC_RAW_D1>±<temp_D1>+<VWC_RAW_D2>±<temp_D2>+<VWC_RAW_D3>±<temp_D3>+<VWC_RAW_
D4>±<temp_D4>

aD1! a+<VWC_D1>±<temp_D1>+<VWC_D2>±<temp_D2>+<VWC_D3>±<temp_D3>+<VWC_D4>±<temp_D4>

NOTE: This command does not adhere to the SDI-12 concurrent command requirements. See METER SDI-12 Implementation for
more information. The measurement and corresponding data commands are intended to be used back to back. After a measurement
command is processed by the sensor, a service request a <CR><LF> is sent from the sensor signaling the measurement is ready. Either wait
until ttt seconds have passed or wait until the service request is received before sending the data commands. Please see the SDI-12
Specifications v1.3 document for more information.

http://www.sdi-12.org/archives/SDI-12_version1_3%20January%2028,%202016.pdf
https://sdi-12.org/archives_folder/SDI-12_version1_3%20January%2028%2C%202016.pdf
https://sdi-12.org/archives_folder/SDI-12_version1_3%20January%2028%2C%202016.pdf

10

VERIFICATION COMMAND IMPLEMENTATION
The Verification (V) command is intended to give users a means to determine information about the current
state of the sensor. The V command is sent first, followed by D commands to read the response.

Table 4 aV! measurement command sequence

Command Response

This command reports instantaneous values.

aV! atttnn

aD0! a+<meta>

NOTE: Please see the SDI-12 Specifications v1.3 document for more information.

EXTENDED COMMANDS IMPLEMENTATION
Extended (X) commands provide sensors with a means of performing manufacturer-specific functions. METER
implements the following extended command to allow integrators an alternative way to turn off the DDI Serial
string. Sending the command without a parameter will return the current setting for <suppressionState>.
Sending a value for <suppressionState> will set that value. Extended commands are required to be prefixed
with the address and terminated with an exclamation point. Responses are required to be prefixed with the
address and terminated with <CR><LF>.

METER implements the following X commands:

• aXRx! to trigger a sensor measurement and return the data automatically after the readings are completed
without needing to send additional commands.

• aXO! (with capital O) to suppress the DDI Serial string.

Please refer to Table 5 through Table 7 for an explanation of the command sequence and see Table 12 for an
explanation of response parameters.

Table 5 aXRx! measurement command sequence

Command Response

This command reports instantaneous values.

 aXO! a<suppressionState>

 aXO<suppressionState> a0K

NOTE: Command uses capital 0 as in Oscar (not a zero). See METER SDI-12 Implementation for more information.

Table 6 aXO! measurement command sequence

Command Response

aXO! a<suppressionState>

aXO<suppressionState> a0K

NOTE: This command uses capital O as in Oscar (not a zero). See METER SDI-12 Implementation for more information.

Table 7 aXR4! measurement command sequence

Command Response

aXR4! a<TAB> <matricPotential> <temperature><CR><sensorType><Checksum><CRC>

NOTE: This command does not adhere to the SDI-12 response format or timing. The values in this command are space delimited. As
such a + sign is not assigned between values, and a – sign is only present if the value is negative. See METER SDI-12 Implementation for
more information.

CONTINUOUS MEASUREMENT COMMANDS IMPLEMENTATION
Continuous Measurement (R) commands trigger a sensor measurement and return the data automatically
after the readings are completed without needing to send a D command.

Please refer to Table 8 through Table 10 for an explanation of the command sequence and see Table 12 for an
explanation of response parameters.

https://sdi-12.org/archives_folder/SDI-12_version1_3%20January%2028%2C%202016.pdf

11

Table 8 aR0! measurement command sequence

Command Response

This command reports average, accumulated, or maximum values.

 aR0! a+<VWC_RAW_D1>±<temp_D1>+<VWC_RAW_D2>±<temp_D2>+<VWC_RAW_D3>±<temp_D3>+<VWC_RAW_
D4>±<temp_D4>

NOTE: This command does not adhere to the SDI-12 response timing. See METER SDI-12 Implementation for more information.

Table 9 aR1! measurement command sequence

Command Response

This command reports average, accumulated, or maximum values.

 aR1! a+<VWC_D1>±<temp_D1>+<VWC_D2>±<temp_D2>+<VWC_D3>±<temp_D3>+<VWC_D4>±<temp_D4>

NOTE: This command does not adhere to the SDI-12 response timing. See METER SDI-12 Implementation for more information.

Table 10 aR3! measurement command sequence

Command Response

This command reports average, accumulated, or maximum values.

 aR3!
 a<TAB><VWC_RAW_D1>±<temp_D1>+<VWC_RAW_D2>±<temp_D2>+<VWC_RAW_D3>±<temp_D3>+<VWC_RAW_
D4>±<temp_D4><CR><sensorType><Checksum><CRC>

NOTE: This command does not adhere to the SDI-12 response format or timing. The values in this command are space delimited. As
such a + sign is not assigned between values, and a - sign is only present if the value is negative. See METER SDI-12 Implementation for
more information.

Table 11 aR4! measurement command sequence

Command Response

This command reports average, accumulated, or maximum values.

 aR4! a<TAB><VWC_RAW_D1>±<temp_D1>+<VWC_RAW_D2>±<temp_D2>+<VWC_RAW_D3>±<temp_D3>+<VWC_RAW_
D4>±<temp_D4><CR><sensorType><Checksum><CRC>

NOTE: This command does not adhere to the SDI-12 response format or timing. The values in this command are space delimited. As
such a + sign is not assigned between values, and a - sign is only present if the value is negative. See METER SDI-12 Implementation for
more information.

PARAMETERS
Table 12 lists the parameters, unit measurement, and a description of the parameters returned in command
responses for TEROS 54.

Table 12 Parameter Descriptions

Parameter Unit Description

 ± — Positive or negative sign denoting sign of the next value

 a — SDI-12 address

 n — Number of measurements (fixed width of 1)

 nn — Number of measurements with leading zero if necessary (fixed width of 2)

 ttt s Maximum time measurement will take (fixed width of 3)

 <TAB> — Tab character

 <CR> — Carriage return character

 <LF> — Line feed character

 <VWC_RAW_Dx> — Calibrated RAW value for volumetric water content at depth Dx

 <temp_Dx> °C Sensor temperature at depth Dx

12

Table 12 Parameter Descriptions (continued)

Parameter Unit Description

 <meta> —

Auxiliary sensor information

0: No sensor error

1: Sensor has experienced temperatures below freezing 16: Sensor refill
orientation error

17: Both 1 and 16

<suppressionState> —
0: DDI Serial string unsuppressed

1: DDI Serial string suppressed

 <sensorType> —
ASCII character denoting the sensor type
For TEROS 54, the character is 3

 <Checksum> — METER serial checksum

 <CRC> — METER 6-bit CRC

SENSOR METADATA VALUE
The sensor metadata value contains information to help alert users to sensor-identified conditions that
may compromise optimal sensor operation. The output of the aV!, aD0! sequence will output a <meta> integer
value. This integer represents a binary bitfield, with each individual bit representing an error flag. Below are
the possible error flags that can be set by the TEROS 54. If multiple error flags are set, the sensor metadata
integer value will be the sum of their individual values. To decode an integer value not explicitly called out
in Table 13, find the largest error flag value in the table that will fit in the integer value and accept that error
as being present. Then, subtract that error flag value from the integer value and repeat the process on the
remainder until the result is 0. For example, a sensor metadata integer value of 273 is the sum of individual
error flag values 256 + 16 + 1, so this sensor has a freezing error flag, sensor misorientation error flag, and
sensor calibrations lost or corrupted error flag.

Table 13 Error flag values and issue resolution

Error Flag Value Issue Present Resolution

0 No issue present NA

256 Sensor calibrations lost or corrupted
Contact Customer Support for
instructions on reloading sensor
calibrations

DDI SERIAL COMMUNICATION
The DDI Serial communications protocol is ideal for systems that have dedicated serial signaling lines for each
sensor or use a multiplexer to handle multiple sensors. The serial communications are compatible with many
TTL serial implementations that support active-high logic levels using 0.0- to 3.6-V signal levels. When the
sensor is first powered, it automatically makes measurements of the integrated transducers then outputs a
response over the data line. Systems using this protocol control the sensor excitation to initiate data transfers
from the sensor. This protocol is subject to change as METER improves and expands the line of digital sensors
and data loggers.

The TEROS 54 will omit the DDI Serial startup string when the SDI-12 address is nonzero.

NOTE: Out of the factory, all METER sensors start with SDI-12 address 0 and print out the startup string when power cycled.

DDI SERIAL TIMING
Table 14 lists the DDI Serial communications configuration.

13

Table 14 DDI Serial communications configuration

Baud Rate 1,200

Start Bits 1

Data Bits 8 (LSB first)

Parity Bits 0 (none)

Stop Bits 1

Logic Standard (active high)

At power up, the sensor will pull the data line high within 100 ms to indicate that the sensor is taking a
reading (Figure 10). When the reading is complete, the sensor begins sending the serial signal out the
data line adhering to the format shown in Figure 11. Once the data is transmitted, the sensor goes into
SDI-12 communication mode. To get another serial signal, the sensor must be power cycled.

NOTE: Sometimes the signaling from the sensor can confuse typical microprocessor UARTs. The sensor holds the data line low while
taking measurements. The sensor raises the line high to signal the logger that it will send a measurement. Then the sensor may take some
additional measurements before starting to clock out the first data byte starting with a typical start bit (low). Once the first start bit is sent,
typical serial timing is valid; however, the signal transitions before this point are not serial signaling and may be misinterpreted by the UART.

SDI-12 readyDDI Serial
Measurement

durationUp to 100 ms

Power applied

Figure 10 Data line DDI Serial timing

START STOPD0 D1 D2 D3 D4 D5 D6 D7

Figure 11 Example DDI Serial transmission of the character 9 (0x39)

DDI SERIAL RESPONSE
Table 15 details the DDI Serial response.

Table 15 DDI Serial response

COMMAND RESPONSE

NA <TAB>+<VWC_RAW_D1>±<temp_D2>+<VWC_RAW_D2>±<temp_D3>+<VWC_RAW_D3>±<temp_D4>+<VWC_RAW_
D4>±<temp_D1><CR><sensorType><Checksum><CRC>

NOTE: There is no actual command. The response is returned automatically upon power up.

DDI SERIAL CHECKSUM
These checksums are used in the continuous commands R3 and R4 as well as the DDI Serial response. The
legacy checksum is computed from the start of the transmission to the sensor identification character,
excluding the sensor address.

14

Example input is <TAB>2749.0 23.8 660<CR>g and the resulting checksum output is 8 .

uint8_t LegacyChecksum(const char * response)
{
 uint16_t length;
 uint16_t i;
 uint16_t sum = 0;

 // Finding the length of the response string
 length = strlen(response);

 // Adding characters in the response together
 for(i = 0; i < length; i++)
 {
 sum += response[i];
 if(response[i] == '\r')
 {
 // Found the beginning of the metadata section of the response
 break;
 }
 }

 // include the sensor type into the checksum
 sum += response[++i];

 // Convert checksum to a printable character
 sum = sum % 64 + 32;

 return sum;
}

The more robust CRC6 utilizes the CRC-6-CDMA2000-A polynomial with the value 48 added to the results to
make this a printable character and is computed from the start of the transmission to the legacy checksum
character, excluding the sensor address.

 CRC6 checksum example input is <TAB>2749.0 23.8 660<CR>g8 and the resulting checksum output is O
(uppercase O as in Oscar).

15

uint8_t CRC6_Offset(const char *buffer)
{
 uint16_t byte;
 uint16_t i;
 uint16_t bytes;
 uint8_t bit;
 uint8_t crc = 0xfc; // Set upper 6 bits to 1’s

 // Calculate total message length—updated once the metadata section is found
 bytes = strlen(buffer);

 // Loop through all the bytes in the buffer
 for(byte = 0; byte < bytes; byte++)
 {
 // Get the next byte in the buffer and XOR it with the crc
 crc ^= buffer[byte];

 // Loop through all the bits in the current byte
 for(bit = 8; bit > 0; bit--)
 {
 // If the uppermost bit is a 1...
 if(crc & 0x80)
 {
 // Shift to the next bit and XOR it with a polynomial
 crc = (crc << 1) ^ 0x9c;
 }
 else
 {
 // Shift to the next bit
 crc = crc << 1;
 }
 }
 if(buffer[byte] == '\r')
 {
 // Found the beginning of the metadata section of the response
 // both sensor type and legacy checksum are part of the crc6
 // this requires only two more iterations of the loop so reset
 // "bytes"

 // bytes is incremented at the beginning of the loop, so 3 is added
 bytes = byte + 3;
 }
 }

 // Shift upper 6 bits down for crc
 crc = (crc >> 2);

 // Add 48 to shift crc to printable character avoiding \r \n and !
 return (crc + 48);
}

METER MODBUS RTU SERIAL IMPLEMENTATION
Modbus over Serial Line is specified in two versions—ASCII and RTU. TEROS 54 sensors communicate using
RTU mode exclusively. The following explanation is always related to RTU.

Table 16 lists the Modbus RTU communication configuration.

16

Table 16 Modbus communication configuration

Baud Rate 9,600

Start Bits 1

Data Bits 8 (LSB first)

Parity Bits 0 (none)

Stop Bits 1

Logic Standard (active high)

at least 3.5 char at least 3.5 char

Frame 1 Frame 2

Modbus message

Frame 3

4.5 char

Start

3.5 char

≥3.5 char

End

≥3.5 char

Address

8 bits

Function

8 bits

Data

N x 8 bits

CRC Check

16 bits

t0

Figure 12 Modbus RTU message frame

A message in Modbus RTU format is shown in Figure 12. The length of the message is determined by the size
of the data. The format of each byte in the message has 10 bits, including the Start and Stop bit. Each byte is
sent from left to right: Least Significant Bit (LSB) to Most Significant Bit (MBS). If no parity is implemented, an
additional Stop bit is transmitted to fill out the character frame to a full 11-bit asynchronous character.

The Modbus application layer implements a set of standard function codes that are divided into three
categories—public, user-defined, and reserved. This document covers TEROS sensor-supported public
functions that are well-defined function codes documented in the Modbus Organization, Inc. (modbus.org)
community.

For a reliable interaction between the TEROS sensors and a Modbus Master, a minimum 50 ms delay is
required between every Modbus command sent on the RS-485 bus. An additional timeout is required for every
Modbus query. This timeout is device specific and depends on the quantity of the polled registers. Generally
100 ms is sufficient for most TEROS sensors.

SUPPORTED MODBUS FUNCTIONS
Table 17 lists the Modbus function codes, action, and description.

Table 17 Modbus Function Definitions

Function Code Action Description
01 Read coil/port status Reads the on/off status of discrete output(s) in the ModBusSlave

02 Read input status Reads the on/off status of discrete input(s) in the ModBusSlave

03 Read holding registers Reads the binary contents of holding register(s) in the ModBusSlave

04 Read input registers Reads the binary contents of input register(s) in the ModBusSlave

05 Force single coil/port Forces a single coil/port in the ModBusSlave to either on or off

06 Write single register Writes a value into a holding register in the ModBusSlave

15 Force multiple coils/ports Forces multiple coils/ports in the ModBusSlave to either on or off

16 Write multiple registers Writes values into a series of holding registers in the ModBusSlave

DATA REPRESENTATION AND REGISTER TABLES
Data values (setpoint values, parameters, sensor specific measurement values, etc.) sent to and from the TEROS
sensors uses both 16-bit and 32-bit holding (or input) registers with a 4-digit address notation. The address
spaces are virtually distributed in different blocks for each of the different data types. This is an approach to
the Modbus Enron implementation. Table 18 shows the four main tables used by the TEROS sensors with their
respective access rights. Table 19 describes the subblocks for each different data type representation.

https://en.wikipedia.org/wiki/Modbus

17

Table 18 Modbus Primary Tables

Register
Number

Table Type Access Description

1XXX Discrete output coils Read/Write On/Off status or setup flags for the sensor

2XXX Discrete input contacts Read Sensor status flags

3XXX Analog input registers Read Numerical input variables from the sensor (actual sensor
measurements)

4XXX Analog output oolding registers Read/Write Numerical output variables for the sensor (parameters,
setpoint values, calibrations, etc.)

For example, register 3001 is the first analog input register (first data address for the input registers). The
numeric value stored here would be a 16-bit unsigned integer-type variable that represents the first sensor
measurement parameter (pressure value). The same measurement parameter (pressure value) could be read
at register 3201, but this time as a 32-bit floating-point value with a Big-Endian format. If the Modbus Master
(Datalogger or a PLC) supports only 32-bit float-values with a Little-Endian format, then one could read the
same measurement parameter (same pressure value) at register 3301. The Virtual Sub-Blocks are meant to
simplify the user’s effort in programming the Modbus query of the sensors.

Table 19 Modbus Virtual Sub-Blocks

Register Number Access Size Sub-Table Data Type

X001–X009 Read/Write 16 bit Unsigned integer

X101–X199 Read/Write 16 bit Signed integer

X201–X299 Read/Write 32 bit Float Big-Endian format

X301–X399 Read/Write 32 bit Float Little-Endian format

REGISTER MAPPING

Table 20 Holding Registers

4001 Modbus Slave Address

Detailed description Read or update the sensor's Modbus address

Data type Unsigned integer

Allowed Range 0–247

Unit —

Comments Updated slave address will be stored in the sensor's nonvolitile memory

3201 MED_MV Output @ 15 cm Depth

Detailed description Raw weighted middle value from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 500–1,500

Unit mV

Comments —

3202 Volumetric Water Content @ 15 cm Depth

Detailed description Volumetric water content measurement as a weighted middle value
from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 0–100

Unit %vol

Comments —

18

Table 20 Holding Registers (continued)

3203 Dielectric Permittivity @ 15 cm Depth

Detailed description Dielectric weighted middle value from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 0 –80

Unit —

Comments —

3204 Temperature @ 15 cm Depth

Detailed description High accuracy on-board temperature measurement

Data type 32-bit floating Big-Endian

Allowed Range –10 to +60

Unit degC

Comments —

3205 MED_MV Output @ 30 cm Depth

Detailed description Raw weighted middle value from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 500–1,500

Unit mV

Comments —

3206 Volumetric Water Content @ 30 cm Depth

Detailed description Volumetric water content measurement as a weighted middle value
from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 0–100

Unit %vol

Comments —

3207 Dielectric Permittivity @ 30 cm Depth

Detailed description Dielectric weighted middle value from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 0 to 80

Unit —

Comments —

3208 Temperature @ 30 cm Depth

Detailed description High accuracy on-board temperature measurement

Data type 32-bit floating Big-Endian

Allowed Range –10 to +60

Unit degC

Comments —

3209 MED_MV Output @ 45 cm Depth

Detailed description Raw weighted middle value from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 500–1,500

Unit mV

Comments —

19

Table 20 Holding Registers (continued)

3210 Volumetric Water Content @ 45 cm Depth

Detailed description Volumetric water content measurement as a weighted middle value
from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 0–100

Unit %vol

Comments —

3211 Dielectric Permittivity @ 45 cm Depth

Detailed description Dielectric weighted middle value from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 0–80

Unit —

Comments —

3212 Temperature @ 45 cm Depth

Detailed description High accuracy on-board temperature measurement

Data type 32-bit floating Big-Endian

Allowed Range –10 to +60

Unit degC

Comments —

3213 MED_MV Output @ 60 cm Depth

Detailed description Raw weighted middle value from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 500–1,500

Unit mV

Comments —

3214 Volumetric Water Content @ 60 cm Depth

Detailed description Volumetric water content measurement as a weighted middle value
from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 0–100

Unit %vol

Comments —

3215 Dielectric Permittivity @ 60 cm Depth

Detailed description Dielectric weighted middle value from all 4 sectors

Data type 32-bit floating Big-Endian

Allowed Range 0 to 80

Unit —

Comments —

3216 Temperature @ 60 cm Depth

Detailed description High accuracy on-board temperature measurement

Data type 32-bit floating Big-Endian

Allowed Range –10 to +60

Unit degC

Comments —

20

EXAMPLE USING A CR6 DATALOGGER AND MODBUS RTU
The Campbell Scientific, Inc. CR6 Measurement and Control Datalogger supports Modbus master and Modbus
slave communication for integration in Modbus SCADA networks. The Modbus communications protocol
facilitates the exchange of information and data between a computer/HMI software, instruments (RTUs),
and Modbus-compatible sensors. The CR6 datalogger communicates in RTU mode exclusively. In a Modbus
network, each slave device has a unique address. Therefore, sensor devices must be properly configured
before being connected to a Modbus Network. Addresses range from 1 to 247. Address 0 is reserved for
universal broadcasts.

PROGRAMMING A CR6 DATALOGGER
The programs running on the CR6 (and CR1000) dataloggers are written in CRBasic, a language developed by
Campbell Scientific. It is a high-level language designed to provide an easy, yet extremely flexible and powerful
method of instructing the datalogger how and when to take measurements, process data ,and communicate.
Programs can be created using either the ShortCut Software or be edited using the CRBasic Editor, both
available for downloading as a stand-alone application on the official Campbell Scientific website.

A typical CRBasic program for a Modbus application consists of the following:

• Variables and constants declarations (public or private)

• Units declarations

• Configuration parameters

• Data tables declarations

• Logger initializations

• Scan (Main Loop) with all the sensors to be quired

• Function call to the data tables

CR6 DATALOGGER RS-485 CONNECTION INTERFACE
The universal (U) terminal of the CR6 offers 12 channels that connect to nearly any sensor type. It gives the
CR6 the ability to match more applications and eliminates the use of many external peripherals.

The Modbus CR6 connection shown in Figure 13 uses the RS-485 (A/B) interface mounted on terminals (C1–C2)
and (C3–C4). These interfaces can operate in Half-Duplex and Full-Duplex. The serial interface of the TEROS
sensor used for this example is connected to (C1–C2) terminals.

TEROS 32 to CR6 Datalogger Wiring Diagram

CR6

G

RG

C4

C3

C2

C1

G

12V

G

SW2

SW1

G

TEROS 32

RS-485-A (white)

RS-485-B (black)

Power (brown)

Ground (blue)

SW12-2 (black)

SW12-1 (black)

Figure 13 RS-485 interface

After assigning the TEROS sensor a unique Modbus Slave Address, it can be wired according to Figure 13 to
the CR6 logger. Make sure to connect the black and the white wires according to their signals respectively
to C1 and C2 ports. The brown wire to 12 V (V+) and the blue to G (GND). If the power supply must be contolled
through the program, connect the brown wire directly to one of the SW12 terminals (switched 12 V outputs).

https://www.campbellsci.com/shortcut
https://www.campbellsci.de/crbasiceditor

21

EXAMPLE PROGRAMS

'CR6 Datalogger
'This is an example program for reading out the Teros54 Soil Water Content Profile Probe 'using a
CR6 datalogger and the MODBUS RTU protocol over a RS-485 Bus. The measurement 'values polled from
the sensor will be: Soil Volumetric Water Content and Temperature
'This program runs a scan every 1 Min and stores the data in a 1 Min table.

'Declare Constants
Const TEROS_MB_ADDR=1 'Teros54 Modbus slave address
Const MB_TIMEOUT=1
Const MB_RETRIES=15 '150ms timeout (value * 0.01sec)
'Declare Public Variables
Public PTemp, batt_volt
Public mb_status ' variable used for monitoring the modbus poll status

'Declare Private variables
Dim MB_dataset(16) 'array variable used for polling the Teros54
Dim water_content(4) 'array with final water content values
Dim temperature(4) 'array with final temperature values
Dim i,j

'Declare Aliases used for the Teros54
Alias water_content(1)= VWC_15CM 'volumetric water content in 15cm depth
Alias water_content(2)= VWC_30CM
Alias water_content(3)= VWC_45CM
Alias water_content(4)= VWC_60CM

Alias temperature(1)= TEMP_15CM 'temperature in 15cm depth
Alias temperature(2)= TEMP_30CM
Alias temperature(3)= TEMP_45CM
Alias temperature(4)= TEMP_60CM
'Declare Units
Units water_content=%Vol
Units temperature=degC

'Define Data Tables
DataTable (Teros_Table,1,-1) 'Set table size to # of records, or -1 to auto allocate.
DataInterval (0,1,Min,10) 'Store new measurement every 1 Minute
Minimum (1,batt_volt,FP2,False,False)
Sample (1,PTemp,FP2)
Sample (4,water_content(),IEEE4) 'water content values
Sample (4,temperature(),IEEE4) 'temperature values
EndTable

'Main Program
BeginProg
SW12(2,1) 'Switch ON the SW12-2 terminal (if used for powering the Teros sensor)
SerialOpen(ComC1,9600,3,2,50,4) 'open communication port, setup for RS-485
 'BaudRate, Format, TXDelay, BufferSize, CommsMode

continued on next page

22

Scan (1,Min,0,0) 'Scan Loop
PanelTemp (PTemp,15000)
Battery (batt_volt)
'Read 16 Input registers from the Teros sensors using a 32 bit float, Big-Endian format
ModbusMaster(mb_status,ComC1,9600,TEROS_MB_ADDR,4,MB_dataset(),3201,16,MB_RETRIES,MB_TIMEOUT,2)
'Map the water content values from the Modbus dataset into the final vwc data array
j=1
For i=2 To 14 Step 4
 water_content(j)=MB_dataset(i)
 j+=1
Next i

'Map temperature values from the Modbus dataset into the final temperature data array
j=1
For i=4 To 16 Step 4
 temperature(j)=MB_dataset(i)
 j+=1
Next i

'Call Output Tables
CallTable Teros_Table
NextScan
EndProg

CUSTOMER SUPPORT
NORTH AMERICA
Customer service representatives are available for questions, problems, or feedback Monday through Friday,
7:00 am to 5:00 pm Pacific time.

Email: support.environment@metergroup.com
sales.environment@metergroup.com

Phone: +1.509.332.5600

Fax: +1.509.332.5158

Website: metergroup.com

EUROPE
Customer service representatives are available for questions, problems, or feedback Monday through Friday,
8:00 to 17:00 Central European time.

Email: support.europe@metergroup.com
sales.europe@metergroup.com

Phone: +49 89 12 66 52 0

Fax: +49 89 12 66 52 20

Website: metergroup.de

If contacting METER by email, please include the following information:

Name
Address
Phone number

Email address
Instrument serial number
Description of problem

NOTE: For products purchased through a distributor, please contact the distributor directly for assistance.

mailto:support.environment%40metergroup.com?subject=
mailto:sales.environment%40metergroup.com?subject=
https://www.metergroup.com
mailto:support%40metergroup.de?subject=
mailto:sales%40metergroup.de?subject=
https://www.metergroup.de

23

REVISION HISTORY
The following table lists document revisions.

Revision Date Compatible Firmware Description

00 3.2023 1.2 Initial release

